Note

On Approximation by Rational Functions

We prove here the following
Theorem. Let $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, a_{0}>0, a_{k} \geqslant 0(k \geqslant 1)$, be an entire function, and denote $M(r)=\operatorname{Max}_{|z|-r}|f(z)|$. Let constants $K(0<K<1)$, $C(>1)$, and $\epsilon(>0)$ be such that, with $\theta=1+\epsilon+\pi^{2}(\log C)^{-1}\left(\log K^{-1}\right)^{-1}$, we have

$$
\begin{equation*}
M((1+K) r)>\{M((1-K) r)\}^{\theta} \tag{1}
\end{equation*}
$$

for all large r. Then for any polynomials $(\not \equiv 0) P(x), Q(x)$ of degree at most n, one has, for all large n,

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}[0, \alpha)} \geqslant C^{-2 n \theta} . \tag{2}
\end{equation*}
$$

Lemma ([1], pp. 450-451): If $0<K<1$, and

$$
\operatorname{Max}_{x \in[-1,-K]}\left|\frac{Q(x)}{P(x)}\right| \leqslant M,
$$

then

$$
\operatorname{Min}_{x \in[K, 1]}\left|\frac{Q(x)}{P(x)}\right| \leqslant M \exp \left(\frac{\pi^{2} n}{\log 1 / K}\right) .
$$

Proof of the Theorem: Let us assume (2) is not true. Then for infinitely many n, and each $r>0$,

$$
\begin{equation*}
\left\|\frac{1}{f(x)}-\frac{P(x)}{Q(x)}\right\|_{L_{\infty}[0,2 r]}<C^{-2 n \theta} . \tag{3}
\end{equation*}
$$

Let $x_{1}=r(1-K)$; then we can find $r>0$ and n such that

$$
\begin{equation*}
f\left(x_{1}\right)=C^{n} . \tag{4}
\end{equation*}
$$

From (3) and (4) it follows that

$$
\begin{equation*}
\operatorname{Max}_{\left[0, x_{1}\right]}\left|\frac{Q(x)}{P(x)}\right|<C^{n} \log n . \tag{5}
\end{equation*}
$$

For $x_{2}=r(1+K)$, we get by (1),

$$
\begin{equation*}
f\left(x_{2}\right)>\left[f\left(x_{1}\right)\right]^{\theta} . \tag{6}
\end{equation*}
$$

By applying the lemma to (5), we obtain

$$
\begin{equation*}
\operatorname{Min}_{\left\lceil x_{2}, 2 r\right\rceil}\left|\frac{Q(x)}{P(x)}\right| \leqslant C^{n} \log n \exp \left(\frac{\pi^{2} n}{\log 1 / K}\right) \tag{7}
\end{equation*}
$$

Let us assume that at $x_{3} \in\left[x_{2}, 2 r\right],|Q(x) / P(x)|$ attains its minimum in $\left[x_{2}, 2 r\right]$. Then clearly $f\left(x_{3}\right) \geqslant f\left(x_{2}\right)$. Hence from (6) and (7), with $\epsilon>$ $((\log \log n) /(\log C) n)$, we get

$$
\begin{equation*}
C^{-2 n \theta}<C^{-n}(\log n)^{-1} \exp \left(\frac{-\pi^{2} n}{\log 1 / K}\right)-C^{-n \theta} \leqslant \frac{P\left(x_{3}\right)}{Q\left(x_{3}\right)}-\frac{1}{f\left(x_{3}\right)} \tag{8}
\end{equation*}
$$

(8) contradicts (3), and the theorem is proved.

Remarks. Newman [2] has established (2), for $f(z)=e^{z}$, with a better constant, by a different method. If $f(z)$ is of order $\rho(0<\rho<\infty)$, type τ, and lower type $\omega(0<\omega \leqslant \tau<\infty)$, then clearly (1) is valid.

References

1. A. A. Goncar, Estimates of the growth of rational functions and some of their applications. Math. Sbornik, 1 (1967), No. 3, 445-456.
2. D. J. Newman, Rational approximation to e^{-x}, J. Approximation Theory 10 (1974), 301-303.

Communicated by Oved Shisha

A. R. Reddy
School of Mathematics
The Institute for Advanced Study
Princeton, N.J. 08540

