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Note

On Approximation by Rational Functions

We prove here the following

THEOREM. Let f(2) = Syo @iz, @y > 0,a;, = 0(k > 1), be an entire
Sfunction, and denote M(r) = Maxy,_, | f(2)| . Let constants K(0 < K < 1),
C(>1), and €(>0) be such that, with 6 = 1 + € + 7* (log C)~* (log K1),
we have

M((1 + K)r) > {M((1 — K)r)}* 1)

for all large r. Then for any polynomials (£0) P(x), Q(x) of degree at most n,
one has, for all large n,
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LemmA ([1], pp. 450-451): If 0 < K < 1, and
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Proof of the Theorem: Let us assume (2) is not true. Then for infinitely
many #, and each » > 0,
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Let x; = r(1 — K); then we can find » > 0 and » such that

flx) =cCn. @
From (3) and (4) it follows that
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For x, = r(1 4 K), we get by (1),

fx) > [fxDP (6)
By applying the lemma to (5), we obtain
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[9,27]

Let us assume that at x; € [x,, 2r], | Q(x)/P(x)| attains its minimum in
[x,,2r]. Then clearly f(x3) > f(x,). Hence from (6) and (7), with e >
((loglog m)/(log C)n) , we get

—7?n P(x;) 1
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C-2 < C-n (log 1)~ exp (

(8) contradicts (3), and the theorem is proved.

Remarks. Newman [2] has established (2), for f(z) = e?, with a better
constant, by a different method. If f(z) is of order p(0 < p < o0), type 7, and
lower type w(0 < w < 7 <C o0), then clearly (1) is valid.
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